RISE OF NATION ACADEMY

"We create the impeccable creature"
Test Paper
Standard - IX
Subject -Mathematics

1 Marks Questions:

Q. 1 The number of consecutive zeroes in $2^{3} \times 3^{4} \times 5^{4} \times 7$, is
(i) 3
(ii) 2
(iii) 4
(iv) 5
Q. 2 If $x+2$ is a factor of $x^{2}-m x+14$, them $m=$
(i) 7
(ii) 2
(iii) 9
(iv) 14
Q. 3 In a $\triangle A B C$, if $\angle A=60^{\circ}, \angle B=80^{\circ}$ and the bisector of $\angle B$ and $\angle C$ meet at 0 , then $\angle B O C=$
(i) 60°
(ii) 120°
(iii) 150° (iv) 30°
Q. 4 In an isosceles triangle, if the vertex angle is twice the sum of the base angles, then the measure of vertex angle of the triangle is
(i) 100°
(ii) 120°
(iii) 110°
(iv) 130°
Q. 5 The perpendicular distance of the point $P(4,3)$ from y-axis is
(i) 4
(ii) 3
(iii) 5
(iv) none of these
Q. 6 The value of $0 . \overline{23}+0 . \overline{22}$ is
(i) $0 . \overline{44}$
(ii) $0 . \overline{43}$
(iii) $0 . \overline{45}$
(iv) 0.45
Q. 7 The simplest rationalizing factor of $3 \sqrt{500}$ is
(i) $3 \sqrt{2}$
(ii) $3 \sqrt{5}$
(iii) $\sqrt{3}$
(iv) none of these
Q. 8 if 3 is a factor of polynomial $p(x)=x^{3}-3 x^{2} a-27$ then value of a is: -
(i) 0
(ii) 12
(iii) -11
(iv) 13
Q. 9 If $\mathrm{a}+\mathrm{b}+\mathrm{c}=0$, then $\frac{a^{2}}{b c}+\frac{b^{2}}{c a}+\frac{c^{2}}{a b}=$
(i) 0
(ii) 1
(iii) -1
(iv) 3
Q. 10 The factors of $x^{3}-7 x+6$ are
(i) $x(x-6)(x-1)$
(ii) $\left(x^{2}-6\right)(x-1)$
(iii) $(x+1)(x+2)(x-3)$
(iv) $(x-1)(x+3)(x-2)$
Q. 11 If $x-a$ is a factor of $x^{3}-3 x^{2} a+2 a^{2} x+b$, then the value of b is -
(i) 0
(ii) 2
(iii) 1
(iv) 3
Q. 12 If the bisectors of the acute angles of a right triangle meet at O, then the angle at O between the two bisectors is -
(a) 45°
(b) 95°
(iii) 135°
(iv) 90°
Q. 13 In a triangle ABC , if $\mathrm{AB}=\mathrm{AC}$ and BC is produced to D such that $\angle A C D=100^{\circ}$, then $\angle A=$
(i) 20°
(ii) 40°
(iii) 60°
(iv) 80°
Q. 14 The abscissa of any point on y - axis is
(i) 0
(ii) 1
(iii) -1
(iv) any number
Q. 15 The base of an isosceles right triangle is $\mathbf{3 0} \mathbf{~ c m}$. its area is
(i) $225 \sqrt{3} \mathrm{~cm}^{2}$
(ii) $225 \mathrm{~cm}^{2}$
(iii) $225 \sqrt{2} \mathrm{~cm}^{2}$
(iv) $450 \mathrm{~cm}^{2}$
Q. 16 The length of each side on an equilateral triangle of area $4 \sqrt{3} \mathrm{~cm}^{2}$, is
(i) 4 cm
(ii) $\frac{4}{\sqrt{3}} \mathrm{~cm}$
(iii) $\frac{\sqrt{3}}{4} \mathbf{c m}$
(iv) $\mathbf{3 ~ c m}$
Q. 17 The distance between the graph of the equations $y=-1$ and $y=3$ is
(i) 2
(ii) 4
(iii) 3
(iv) 1
Q. 18 if one angle of a triangle is equal to the some of the other two angles, then the triangle is
(i) an isosceles triangle (ii) an obtuse angle (iii) an equilateral angle (iv) a right angle
Q. 19 Which of the following is not a criterion for congruence of triangles?
(i) SAS
(ii) SSA
(iii) ASA
(iv) SSS
Q. 20 The distance of the point $P(4,3)$ from the origin is
(i) 4
(ii) 3
(iii) 5
(iv) 7

2 Marks Questions:

Q. 21 Prove that: $\frac{a^{-1}}{a^{-1}+b^{-1}}+\frac{a^{-1}}{a^{-1}-b^{-1}}=\frac{2 b^{2}}{b^{2}-a^{2}}$.
Q. 22 If $x=2 k-1$ and $y=k$ is a solution of the equation $3 x-5 y-7=0$, find the value of k.
Q. 23 If the point $(3,4)$ lies on the graph of the equation $3 y=a x+7$, find the value of a.
Q. 24 The value of $\frac{(2.3)^{3}-0.027}{(2.3)^{2}+0.69+0.09}$ is?

Q. 25 Factorize: $p^{6}-512 q^{6}$
Q. 26 The perimeter of a triangle is 300 m . If its sides are in the ratio $3: 5: 7$. Find the area of the triangle.

3 Marks Questions:

Q. 27 Find the value of $(x-a)^{3}+(x-b)^{3}+(x-c)^{3}-3(x-a)(x-$ b) $(x-c)$ when $a+b+c=3 x$.
Q. 28 In fig. $\mathrm{AC}=\mathrm{BC}, \angle D C A=\angle E C B$ and $\angle D B C=$ $\angle E A C$. Prove that triangles DBC and EAC are congruent, and hence $\mathrm{DC}=\mathrm{EC}$ and $\mathrm{BD}=\mathrm{AE}$.
Q. 29 If the bisector of a pair of alternate angles formed by a transversal with two given lines are parallel, prove that the given lines are parallel.
Q. 30 In the fig. two sides $A B$ and $B C$ and the median $A D$ of $\triangle A B C$ are equal respectively to the two sides $P Q$ and $Q R$ and the median $P M$ of the other triangle
 $P Q R$. Prove that: (i) $\triangle A B D \cong \triangle P Q M$
(ii) $\triangle A B C \cong \triangle P Q R$
Q. 31 Show that the sum of the three altitudes of a triangle is less than the sum of three sides of the triangle.
Q. 32 Find the percentage increase in the area of a triangles if its each side is doubled.
Q. 33 What must be subtracted from $4 x^{4}-2 x^{3}-6 x^{2}+x-5$ so that the result is exactly divisible by $2 x^{2}+x-1$?

| cbse Fguess $^{\text {CBSEGuess.com }}$ |
| :--- | :--- |

Q. 34 If both a and b are rational numbers, find the value of a and b in each of the following qualities: $\frac{5+2 \sqrt{3}}{7+4 \sqrt{3}}=a+b \sqrt{3}$.

4 Marks Questions:

Q. 35 In fig. m and n are two plane mirrors perpendicular to each other. Show that the incident ray CA is parallel to the reflected ray BD.
Q. 36 In fig. PQRS is a square and SRT is an
 equilateral triangle. Prove that: (i) $\mathbf{P T}=\mathbf{Q T}$
(ii) $\angle T Q R=15^{\circ}$
Q. 37 If two parallel lines are intersected by a transversal, prove that the bisectors of the two pairs of interior angles enclose a rectangle.
Q. 38 If $x^{4}+\frac{1}{x^{4}}=47$. find the value of $x^{3}+\frac{1}{x^{3}}$.
Q. 39 If $\frac{9^{n} \times 3^{2} \times\left(3^{-\frac{n}{2}}\right)^{-2}-(27)^{\circ}}{3^{3 m} \times 2^{3}}=\frac{1}{27}$, prove that $m-n=1$.
Q. 40 Prove that the angle between internal bisector of one base angle and the external bisector of the other base angle of a triangle is equal to one-half of the vertical angle.

